Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-28, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594966

RESUMO

Oil bodies (OBs) function as organelles that store lipids in plant seeds. An oil body (OB) is encased by a membrane composed of proteins (e.g., oleosins, caleosins, and steroleosins) and a phospholipid monolayer. The distinctive protein-phospholipid membrane architecture of OBs imparts exceptional stability even in extreme environments, thereby sparking increasing interest in their structure and properties. However, a comprehensive understanding of the structure-activity relationships determining the stability and properties of oil bodies requires a more profound exploration of the associated membrane proteins, an aspect that remains relatively unexplored. In this review, we aim to summarize and discuss the structural attributes, biological functions, and properties of OB membrane proteins. From a commercial perspective, an in-depth understanding of the structural and functional properties of OBs is important for the expansion of their applications by producing artificial oil bodies (AOB). Besides exploring their structural intricacies, we describe various methods that are used for purifying and isolating OB membrane proteins. These insights may provide a foundational framework for the practical utilization of OB membrane proteins in diverse applications within the realm of AOB technology, including biological and probiotic delivery, protein purification, enzyme immobilization, astringency detection, and antibody production.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34478375

RESUMO

In previous work, we developed an exoskeleton, Hand Spring Operated Movement Enhancer (HandSOME II), that allows movement at 15 hand degrees of freedom (DOF). Eleven separate elastic elements can be added to customize the extension assistance for individuals with impaired hand function. In this pilot study of twelve individuals with stroke, we measured the immediate improvements in range of motion (ROM) and upper extremity function when wearing the device. Index finger ROM was significantly improved at the PIP (p=.01) and DIP joints (p=.026), and the max extension was significantly increased at the MCP (p<.001), PIP (p=.013) and DIP joints (p=.016). The thumb CMC abduction max (p=.017) and CMC flexion/extension ROM also increased (p=.04). In a grip and release task involving various objects, six subjects were unable to complete the tasks without assistance. Across these 6 subjects, 13 of 42 tasks were completed without assistance, while 36 of 42 tasks were completed when wearing HandSOME II. Despite the extension assistance provided by the device, flexion grip force was not statistically decreased. HandSOME II can potentially increase the effectiveness of repetitive task practice in patients with moderate-severe hand impairment by allowing completion of grasp and release tasks that are impossible to complete unassisted.


Assuntos
Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Mãos , Força da Mão , Humanos , Projetos Piloto , Amplitude de Movimento Articular
3.
Front Public Health ; 9: 789026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096742

RESUMO

Background: Primary liver cancer is a common malignant tumor primarily represented by hepatocellular carcinoma (HCC). The number of elderly patients with early HCC is increasing, and older age is related to a worse prognosis. However, an accurate predictive model for the prognosis of these patients is still lacking. Methods: Data of eligible elderly patients with early HCC in Surveillance, Epidemiology, and End Results database from 2010 to 2016 were downloaded. Patients from 2010 to 2015 were randomly assigned to the training cohort (n = 1093) and validation cohort (n = 461). Patients' data in 2016 (n = 431) was used for external validation. Independent prognostic factors were obtained using univariate and multivariate analyses. Based on these factors, a cancer-specific survival (CSS) nomogram was constructed. The predictive performance and clinical practicability of our nomogram were validated. According to the risk scores of our nomogram, patients were divided into low-, intermediate-, and high-risk groups. A survival analysis was performed using Kaplan-Meier curves and log-rank tests. Results: Age, race, T stage, histological grade, surgery, radiotherapy, and chemotherapy were independent predictors for CSS and thus were included in our nomogram. In the training cohort and validation cohort, the concordance indices (C-indices) of our nomogram were 0.739 (95% CI: 0.714-0.764) and 0.756 (95% CI: 0.719-0.793), respectively. The 1-, 3-, and 5-year areas under receiver operating characteristic curves (AUCs) showed similar results. Calibration curves revealed high consistency between observations and predictions. In external validation cohort, C-index (0.802, 95%CI: 0.778-0.826) and calibration curves also revealed high consistency between observations and predictions. Compared with the TNM stage, nomogram-related decision curve analysis (DCA) curves indicated better clinical practicability. Kaplan-Meier curves revealed that CSS significantly differed among the three different risk groups. In addition, an online prediction tool for CSS was developed. Conclusions: A web-based prediction model for CSS of elderly patients with early HCC was constructed and validated, and it may be helpful for the prognostic evaluation, therapeutic strategy selection, and follow-up management of these patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Idoso , Carcinoma Hepatocelular/terapia , Humanos , Internet , Neoplasias Hepáticas/terapia , Nomogramas , Programa de SEER
4.
Artigo em Inglês | MEDLINE | ID: mdl-35419565

RESUMO

Impaired use of the hand in functional tasks remains difficult to overcome in many individuals after a stroke. This often leads to compensation strategies using the less-affected limb, which allows for independence in some aspects of daily activities. However, recovery of hand function remains an important therapeutic goal of many individuals, and is often resistant to conventional therapies. In prior work, we developed HEXORR I, a robotic device that allows practice of finger and thumb movements with robotic assistance. In this study, we describe modifications to the device, now called HEXORR II, and a clinical trial in individuals with chronic stroke. Fifteen individuals with a diagnosis of chronic stroke were randomized to 12 or 24 sessions of robotic therapy. The sessions involved playing several video games using thumb and finger movement. The robot applied assistance to extension movement that was adapted based on task performance. Clinical and motion capture evaluations were performed before and after training and again at a 6-month followup. Fourteen individuals completed the protocol. Fugl-Meyer scores improved significantly at the 6 month time point compared to baseline, indicating reductions in upper extremity impairment. Flexor hypertonia (Modified Ashworth Scale) also decreased significantly due to the intervention. Motion capture found increased finger range of motion and extension ability after the intervention that continued to improve during the followup period. However, there was no change in a functional measure (Action Research Arm Test). At the followup, the high dose group had significant gains in hand displacement during a forward reach task. There were no other significant differences between groups. Future work with HEXORR II should focus on integrating it with functional task practice and incorporating grip and squeezing tasks.

5.
Front Neurorobot ; 15: 773477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975447

RESUMO

We have developed a passive and lightweight wearable hand exoskeleton (HandSOME II) that improves range of motion and functional task practice in laboratory testing. For this longitudinal study, we recruited 15 individuals with chronic stroke and asked them to use the device at home for 1.5 h per weekday for 8 weeks. Subjects visited the clinic once per week to report progress and troubleshoot problems. Subjects were then given the HandSOME II for the next 3 months, and asked to continue to use it, but without any scheduled contact with the project team. Clinical evaluations and biomechanical testing was performed before and after the 8 week intervention and at the 3 month followup. EEG measures were taken before and after the 8 weeks of training to examine any recovery associated brain reorganization. Ten subjects completed the study. After 8 weeks of training, functional ability (Action Research Arm Test), flexor tone (Modified Ashworth Test), and real world use of the impaired limb (Motor Activity Log) improved significantly (p < 0.05). Gains in real world use were retained at the 3-month followup (p = 0.005). At both post-training and followup time points, biomechanical testing found significant gains in finger ROM and hand displacement in a reaching task (p < 0.05). Baseline functional connectivity correlated with gains in motor function, while changes in EEG functional connectivity paralleled changes in motor recovery. HandSOME II is a low-cost, home-based intervention that elicits brain plasticity and can improve functional motor outcomes in the chronic stroke population.

6.
IEEE Int Conf Rehabil Robot ; 2019: 317-322, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374649

RESUMO

Low impedance and torque control are critical for movement rehabilitation using robotic exoskeletons. A grounded 3 degree of freedom shoulder exoskeleton was designed for movement assistance in shoulder abduction/adduction, flexion/extension, and shoulder internal/external rotation. Two series elastic actuators designs were developed using a linear spring arrangement with a global nonlinear stiffness behavior. RMS errors during application of constant torque were less than.06 Nm in shoulder add/abd and less than.04 Nm in arm rotation as the limb was moved in sinusoidal trajectories up to 3.5 Hz. For abd/adduction, the step response rise time was.05 s, and free mode impedance peaked at.007 Nm/deg during 3.5 Hz oscillations. For arm rotation, the step response rise time was.03 s, and impedance peaked at.023 Nm/deg during 3.5 Hz oscillations. Both SEA designs had performance measurements that were similar to other SEA designs in terms of torque tracking, but with much lower impedance than previously reported.


Assuntos
Desenho de Equipamento , Exoesqueleto Energizado , Movimento , Amplitude de Movimento Articular , Rotação , Ombro , Fenômenos Biomecânicos , Humanos
7.
IEEE Trans Robot ; 35(6): 1464-1474, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31929766

RESUMO

Movement impairments resulting from neurologic injuries, such as stroke, can be treated with robotic exoskeletons that assist with movement retraining. Exoskeleton designs benefit from low impedance and accurate torque control. We designed a 2 degree-of-freedom tethered exoskeleton that can provide independent torque control on elbow flexion/extension and forearm supination/pronation. Two identical series elastic actuators (SEAs) are used to actuate the exoskeleton. The two SEAs are coupled through a novel cable-driven differential. The exoskeleton is compact and lightweight, with a mass of 0.9 kg. Applied RMS torque errors were less than 0.19 Nm. Benchtop tests demonstrated a torque rise time of approximately 0.1 s, a torque control bandwidth of 3.7 Hz and an impedance of less than 0.03 Nm/deg at 1 Hz. The controller can simulate a stable maximum wall stiffness of 0.45 Nm/deg. The overall performance is adequate for robotic therapy applications and the novelty of the design is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...